Luyện tập Bài §5. Dấu hiệu nhận biết tiếp tuyến của đường tròn, chương II - Đường tròn, sách giáo khoa toán 9 tập một. Nội dung bài giải bài 24 25 trang 111 112 sgk toán 9 tập 1 bao gồm tổng hợp công thức, lý thuyết, phương pháp giải bài tập phần hình học có trong SGK toán để giúp các em học sinh học tốt môn toán lớp 9.
Lý thuyết
1. Dấu hiệu nhận biết tiếp tuyến của đường tròn
ĐỊNH LÍ: Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường tròn.
2. Áp dụng
Bài toán: Qua điểm A ngoài đường tròn $(O)$ hãy dựng tiếp tuyến của đường tròn.
Cách dựng:
- Dựng $M$ là trung điểm $AO$.
- Dựng đường tròn tâm $M$ bán kính $MO$ cắt $(O)$ tại $B, C.$
- Kẻ các đường thẳng $AB$ và $AC$. Ta được các tiếp tuyến cần dựng.
Dưới đây là Hướng dẫn giải bài 24 25 trang 111 112 sgk toán 9 tập 1. Các bạn hãy đọc kỹ đầu bài trước khi giải nhé!
Luyện tập
Giaibaisgk.com giới thiệu với các bạn đầy đủ phương pháp giải bài tập phần hình học 9 kèm bài giải chi tiết bài 24 25 trang 111 112 sgk toán 9 tập 1 của bài §5. Dấu hiệu nhận biết tiếp tuyến của đường tròn trong chương II - Đường tròn cho các bạn tham khảo. Nội dung chi tiết bài giải từng bài tập các bạn xem dưới đây:
1. Giải bài 24 trang 111 sgk Toán 9 tập 1
Cho đường tròn $(O)$, dây $AB$ khác đường kính. Qua $O$ kẻ đường vuông góc với $AB$, cắt tiếp tuyến tại $A$ của đường tròn ở điểm $C$.
a) Chứng minh rằng $CB$ là tiếp tuyến của đường tròn.
b) Cho bán kính của đường tròn bằng $15cm, AB = 24cm$. Tính độ dài $OC$.
Bài giải:
a) Ta có $AC$ là tiếp tuyến của $(O)$ nên $widehat{OAC} = 90^0 (1)$
Gọi $E$ là giao điểm của $AB$ và $OC$
Tam giác $AOB$ có $OA = OB$ (bán kính đường tròn)
Nên tam giác $AOB$ cân tại $O$.
Đường cao $OE$ của tam giác cân $AOB$ cũng là phân giác. Nên $widehat{O_1} = widehat{O_2}$
Xét hai tam giác $AOC$ và $BOC$ có:
$OA = OB = R$
$OC$ chung
$widehat{O_1} = widehat{O_2}$
Do đó: $Delta AOC = Delta BOC$
Suy ra $widehat{OAC} = widehat{OBC} (2)$
Từ (1) và (2) suy ra $widehat{OBC} = 90^0$, nghĩa là $CB perp OB.$
Do đó $CB$ là tiếp tuyến của đường tròn $(O) (đpcm)$
b) Bán kính của đường tròn bằng 15, tức $OA = 15cm$
Ta có: $OE perp AB$
Suy ra $EA = EB = frac{AB}{2} = frac{24}{2} = 12$
Áp dụng định lí Pi-ta-go trong tam giác $AOE$ vuông tại $E$, ta có:
$OE^2 = OA^2 - AE^2$
$= 15^2 - 12^2 = 225 - 144 = 81$
$⇒ OE = sqrt{81} = 9$
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền trong tam giác vuông $AOC$, ta có:
$OA^2 = OC.OE$
$⇒ OC = frac{OA^2}{OE} = frac{15^2}{9} = 25$
Vậy $OC = 25 cm.$
2. Giải bài 25 trang 112 sgk Toán 9 tập 1
Cho đường tròn tâm $O$ có bán kính $OA = R$, dây $BC$ vuông góc với $OA$ tại trung điểm $M$ của $OA$.
a) Tứ giác $OCAB$ là hình gì? Vì sao?
b) Kẻ tiếp tuyến với đường tròn tại $B$, nó cắt đường thẳng $OA$ tại $E$. Tính độ dài $BE$ theo $R$.
Bài giải:
a) Ta có:
$MB = MC$ (vì $OA perp BC$ tại M)
$MO = MA$ (M là trung điểm của OA)
Tứ giác $OCAB$ có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.
Mặt khác hình bình hành $OCAB$ có hai đường chéo $OA$ và $BC$ vuông góc với nhau.
Nên tứ giác $OCAB$ là hình thoi.
b) Ta có:
$OB = BA = OA = R$ (vì $OCAB$ là hình thoi)
Nên tam giác $OBA$ đều.
Suy ra $widehat{AOB} = 60^0$ hay $widehat{EOB} = 60^0$
Áp dụng tỉ số lượng giác của góc nhọn trong tam giác $OBE$, ta có:
$tg widehat{EOB} = frac{BE}{OB}$
$⇒ BE = OB.tg 60^0 = Rsqrt{3}$
Vậy $BE = Rsqrt{3}$
Bài trước:
- Giải bài 21 22 23 trang 111 sgk Toán 9 tập 1
Bài tiếp theo:
- Giải bài 26 27 28 29 trang 115 116 sgk Toán 9 tập 1
Xem thêm:
- Các bài toán 9 khác
- Để học tốt môn Vật lí lớp 9
- Để học tốt môn Sinh học lớp 9
- Để học tốt môn Ngữ văn lớp 9
- Để học tốt môn Lịch sử lớp 9
- Để học tốt môn Địa lí lớp 9
- Để học tốt môn Tiếng Anh lớp 9
- Để học tốt môn Tiếng Anh lớp 9 thí điểm
- Để học tốt môn Tin học lớp 9
- Để học tốt môn GDCD lớp 9
Chúc các bạn làm bài tốt cùng giải bài tập sgk toán lớp 9 với giải bài 24 25 trang 111 112 sgk toán 9 tập 1!
“Bài tập nào khó đã có giaibaisgk.com“