Toán Tiểu học: Công thức tính diện tích, chu vi, thể tích hình cơ bản giúp các em học sinh lớp 4, 5, hệ thống hóa kiến thức về tính diện tích, tính chu vi, thể tích hình tam giác, hình tứ giác, hình vuông, hình chữ nhật, hình tròn, hình bình hành, hình thoi, hình nón, hình cầu, hình trụ, hình lập phương, hình thang, hình hộp chữ nhật.
Qua đó, các em dễ dàng áp dụng vào từng bài tập cụ thể, mà không gặp bất kỳ trở ngại nào, để ngày càng học tốt phần Hình học. Mời các em cùng theo dõi bài viết dưới đây của Download.vn để nắm vững các công thức hình học cơ bản nhé:
1. Tính chu vi, diện tích Hình chữ nhật
2. Tính chu vi, diện tích Hình vuông
3. Tính chu vi, diện tích Hình bình hành
4. Tính chu vi, diện tích Hình thoi
5. Tính chu vi, diện tích Hình tam giác
6. Tính chu vi, diện tích Hình tứ giác
7. Tính chu vi, diện tích Hình thang vuông, cân
Có một cạnh bên vuông góc với hai đáy, cạnh bên đó chính là chiều cao hình thang vuông. Khi tính diện tích hình thang vuông ta tính như cách tìm hình thang.
Hình thang cân: có hai đường chéo bằng nhau, hai góc tù bằng nhau và hai góc nhọn bằng nhau.
8. Tính chu vi, diện tích hình tròn
12. Tính diện tích, thể tích hình trụ
Công thức tính diện tích xung quanh hình trụ
S (xung quanh) = 2 x π x r x h
Trong đó:
- r: bán kính hình trụ
- h: chiều cao nối từ đáy tới đỉnh hình trụ
- π = 3,14
Công thức tính diện tích toàn phần hình trụ
S (toàn phần) = 2 x π x r2 + 2 x π x r x h = 2 π x r x (r + h)
Trong đó:
- r: bán kính hình trụ
- 2 x π x r x h: diện tích xung quanh hình trụ
- 2 x π x r2: diện tích của hai đáy
Công thức tính thể tích hình trụ
V = π x r2 x h
Trong đó:
- r: bán kính hình trụ
- h: chiều cao hình trụ
13. Tính chu vi, diện tích Hình cầu
Công thức tính diện tích mặt cầu
Công thức tính thể tích hình cầu
Trong đó:
- S là diện tích mặt cầu
- V là thể tích hình cầu
- r là bán kính mặt cầu/hình cầu
- d là bánh kính mặt cầu/hình cầu