Luyện tập Bài §7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo), chương I - Căn bậc hai. Căn bậc ba, sách giáo khoa toán 9 tập một. Nội dung bài giải bài 53 54 55 56 57 trang 30 sgk toán 9 tập 1 bao gồm tổng hợp công thức, lý thuyết, phương pháp giải bài tập phần đại số có trong SGK toán để giúp các em học sinh học tốt môn toán lớp 9.
Khi biến đổi biểu thức chứa căn bậc hai, người ta có thể sử dụng phép khử mẫu của biểu thức lấy căn.
Một cách tổng quát: Với các biểu thức A, B mà (A.Bgeq 0 và Bneq 0, ta có sqrt{frac{A}{B}}=frac{sqrt{AB}}{|B|})
Một cách tổng quát:
Với các biểu thức A, B mà (B>0), ta có: (frac{A}{sqrt{B}}=frac{Asqrt{B}}{B})
Với các biểu thức A, B, C mà (Ageq 0 và Aneq B^2), ta có (frac{C}{sqrt{A}pm B}=frac{C(sqrt{A}pm B)}{A-B^2})
Với các biểu thức A, B, C mà (Ageq 0, Bgeq 0 và Aneq B), ta có (frac{C}{sqrt{A}pm sqrt{B}}=frac{C(sqrt{A}pm sqrt{B})}{A-B})
Dưới đây là Hướng dẫn giải bài 53 54 55 56 57 trang 30 sgk toán 9 tập 1. Các bạn hãy đọc kỹ đầu bài trước khi giải nhé!
Giaibaisgk.com giới thiệu với các bạn đầy đủ phương pháp giải bài tập phần đại số 9 kèm bài giải chi tiết bài 53 54 55 56 57 trang 30 sgk toán 9 tập 1 của bài §7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo) trong chương I - Căn bậc hai. Căn bậc ba cho các bạn tham khảo. Nội dung chi tiết bài giải từng bài tập các bạn xem dưới đây:
Rút gọn các biểu thức sau (giả thiết các biểu thức chữ đều có nghĩa):
a) $sqrt{18(sqrt{2} - sqrt{3})^2}$ ;
b) ab.$sqrt{1 + frac{1}{a^2b^2}}$;
c) $sqrt{frac{a}{b^3} + frac{a}{b^4}}$ ;
d) $frac{a + sqrt{ab}}{sqrt{a} + sqrt{b}}$
Bài giải:
a) Ta có:
(sqrt{18(sqrt{2}-sqrt{3})^{2}}=sqrt {18}.sqrt{(sqrt 2 - sqrt 3)^2})
(=sqrt{9.2}.|sqrt{2}-sqrt{3}|=sqrt{3^2.2}.|sqrt{2}-sqrt{3}|)
(=3sqrt{2}.|sqrt{2}-sqrt{3}|=3sqrt{2}(sqrt{3}-sqrt{2}))
(=3sqrt {2.3}- 3(sqrt 2)^2)
(=3sqrt 6 -3.2=3sqrt{6}-6).
Vì ( 2 < 3 Leftrightarrow sqrt 2 < sqrt 3 Leftrightarrow sqrt 2 -sqrt 3 <0)
Do đó: ( |sqrt 2 -sqrt 3|=-(sqrt 2 -sqrt 3)=-sqrt 2 +sqrt 3) (=sqrt 3-sqrt2).
b) Ta có:
$absqrt{1+frac{1}{a^{2}b^{2}}}=absqrt{dfrac{a^2b^2}{a^2b^2}+dfrac{1}{a^2b^2}}$
$=absqrt{dfrac{a^2b^2+1}{a^2b^2}}=abdfrac{sqrt{a^2b^2+1}}{sqrt{a^2b^2}}$
$=abdfrac{sqrt{a^2b^2+1}}{sqrt{(ab)^2}}=abdfrac{sqrt{a^2b^2+1}}{|ab|}$
Nếu (ab ge 0) thì (|ab|=ab)
( Rightarrow abdfrac{sqrt{a^2b^2+1}}{|ab|}=abdfrac{sqrt{a^2b^2+1}}{ab}=sqrt{a^2b^2+1}).
Nếu (ab < 0) thì (|ab|=-ab )
(Rightarrow abdfrac{sqrt{a^2b^2+1}}{|ab|}=abdfrac{sqrt{a^2b^2+1}}{-ab}=-sqrt{a^2b^2+1}).
c) Ta có:
$sqrt{dfrac{a}{b^{3}}+dfrac{a}{b^{4}}}=sqrt{dfrac{a.b}{b^{3}.b}+dfrac{a}{b^{4}}}$
$=sqrt{dfrac{ab}{b^4}+dfrac{a}{b^4}}=sqrt{dfrac{ab+a}{b^4}}$
$=dfrac{sqrt{ab+a}}{sqrt{(b^2)^2}}=dfrac{sqrt{ab+a}}{|b^2|}=dfrac{sqrt{ab+a}}{b^2}$.
Vì (b^2 > 0) với mọi ( b ne 0) nên ( |b^2|=b^2).
d) Ta có:
$dfrac{a+sqrt{ab}}{sqrt{a}+sqrt{b}}=dfrac{(sqrt a)^2+sqrt{a}.sqrt b}{sqrt{a}+sqrt{b}}$
$=dfrac{sqrt a (sqrt a+sqrt b)}{sqrt{a}+sqrt{b}}=sqrt a$.
Vì theo đề bài các căn thức có nghĩa nên ta có:
(a > 0, b > 0 Rightarrow sqrt{ab}=sqrt a.sqrt b).
Rút gọn các biểu thức sau (giả thiết các biểu thức chữ đều có nghĩa):
Rút gọn các biểu thức sau (giả thiết các biểu thức chữ đều có nghĩa):
(dfrac{2+sqrt{2}}{1+sqrt{2}};,,, dfrac{sqrt{15}-sqrt{5}}{1-sqrt{3}};,,,dfrac{2sqrt{3}-sqrt{6}}{sqrt{8}-2}; )
(dfrac{a-sqrt{a}}{1-sqrt{a}};,,, dfrac{p-2sqrt{p}}{sqrt{p}-2}.)
Bài giải:
+ Ta có:
$dfrac{2+sqrt{2}}{1+sqrt{2}}=dfrac{(sqrt 2)^2+ sqrt 2}{1+ sqrt 2}$
$=dfrac{sqrt{2}(sqrt{2}+1)}{1+sqrt{2}}=dfrac{sqrt 2(1+ sqrt 2)}{sqrt 2}=sqrt{2}$.
+ Ta có:
(dfrac{sqrt{15}-sqrt{5}}{1-sqrt{3}}=dfrac{sqrt{3.5}-sqrt{5.1}}{1-sqrt{3}})
$=dfrac{sqrt{5}.sqrt{3}-sqrt{5}.1}{1-sqrt{3}}=dfrac{sqrt{5}(sqrt{3}-1)}{1-sqrt{3}}$
$=dfrac{-sqrt{5}(1-sqrt{3})}{1-sqrt{3}}=-sqrt{5}$.
+ Ta có:
(dfrac{2sqrt{3}-sqrt{6}}{sqrt{8}-2}=dfrac{(sqrt 2)^2.sqrt 3-sqrt 6}{sqrt{4.2}- 2})
(=dfrac{sqrt 2.(sqrt 2.sqrt 3)-sqrt 6}{2sqrt 2 -2})(=dfrac{2sqrt{6}-sqrt 6}{2(sqrt{2}-1)})
(=dfrac{sqrt{6}(sqrt{2}-1)}{2(sqrt{2}-1)}=dfrac{sqrt{6}}{2}).
+ Ta có:
$dfrac{a-sqrt{a}}{1-sqrt{a}}=dfrac{(sqrt a)^2-sqrt a .1}{1-sqrt a}$
$=dfrac{sqrt{a}(sqrt{a}-1)}{1-sqrt{a}}=dfrac{-sqrt{a}(1-sqrt{a})}{1-sqrt{a}}=-sqrt{a}$.
+ Ta có:
$dfrac{p-2sqrt{p}}{sqrt{p}-2}=dfrac{(sqrt p)^2-2.sqrt{p}}{sqrt{p}-2}$
$=dfrac{sqrt{p}(sqrt{p}-2)}{sqrt{p}-2}=sqrt{p}$.
Phân tích thành nhân tử (với (a, b, x, y) là các số không âm)
a) (ab + bsqrt a + sqrt a + 1)
b) (sqrt {{x^3}} - sqrt {{y^3}} + sqrt {{x^2}y} - sqrt {x{y^2}} )
Bài giải:
a) Ta có:
(ab+bsqrt{a}+sqrt{a}+1=(ab+bsqrt{a})+(sqrt{a}+1))
(=(ba+bsqrt{a})+(sqrt{a}+1))
(=left[ {b.left( {sqrt a .sqrt a } right) + bsqrt a} right] + left( {sqrt a + 1} right))
(=[(bsqrt a).sqrt a+ bsqrt a.1]+(sqrt a + 1))
(=bsqrt{a}(sqrt{a}+1)+(sqrt{a}+1))
(=(sqrt{a}+1)(bsqrt{a}+1)).
b) Ta có:
♦ Cách 1: Sử dụng hằng đẳng thức số (7):
(sqrt{x^{3}}-sqrt{y^{3}}+sqrt{x^{2}y}-sqrt{xy^{2}})
(=[(sqrt x)^3-(sqrt y)^3]+ (sqrt{x.xy}-sqrt{y.xy}))
(=(sqrt x-sqrt y).[(sqrt x)^2 + sqrt x.sqrt y+(sqrt y)^2])
(+ (sqrt{x}.sqrt{xy}-sqrt{y}.sqrt{xy}))
(=(sqrt x-sqrt y).[(sqrt x)^2 + sqrt x.sqrt y+(sqrt y)^2])
(+ sqrt{xy}.(sqrt{x}-sqrt{y}))
(=(sqrt x-sqrt y).[(sqrt x)^2 + sqrt x.sqrt y+(sqrt y)^2+sqrt{xy}])
(=(sqrt x-sqrt y).[(sqrt x)^2 + sqrt x.sqrt y+(sqrt y)^2+sqrt{x}.sqrt{y}])
(=(sqrt x-sqrt y).[(sqrt x)^2 + 2sqrt x.sqrt y+(sqrt y)^2])
(=(sqrt x-sqrt y).(sqrt x+sqrt y)^2).
♦ Cách 2: Nhóm các hạng tử:
(sqrt{x^{3}}-sqrt{y^{3}}+sqrt{x^{2}y}-sqrt{xy^{2}})
(=xsqrt{x}-ysqrt{y}+xsqrt{y}-ysqrt{x})
(=(xsqrt{x}+xsqrt{y})-(ysqrt{x}+ysqrt{y}))
(=x(sqrt{x}+sqrt{y})-y(sqrt{y}+sqrt{x}))
(=(sqrt{x}+sqrt{y})(x-y))
(=(sqrt{x}+sqrt{y})(sqrt x+sqrt y)(sqrt x -sqrt y))
(=(sqrt{x}+sqrt{y})^2(sqrt{x}-sqrt{y})).
Sắp xếp theo thứ tự tăng dần:
a) 3$sqrt{5}$; 2$sqrt{6}$; $sqrt{29}$; 4$sqrt{2}$
b) 6$sqrt{2}$; $sqrt{38}$; 3$sqrt{7}$; 2$sqrt{14}$
Bài giải:
a) Ta có:
(left{ matrix{ 3sqrt 5 = sqrt {{3^2}.5} = sqrt {9.5} = sqrt {45} hfill cr 2sqrt 6 = sqrt {{2^2}.6} = sqrt {4.6} = sqrt {24} hfill cr 4sqrt 2 = sqrt {{4^2}.2} = sqrt {16.2} = sqrt {32} hfill cr} right.)
Vì: (24 < 29 < 32 < 45 Leftrightarrow sqrt{24}<sqrt{29}<sqrt{32}<sqrt{45})
(Leftrightarrow 2sqrt{6}<sqrt{29}< 4sqrt{2}< 3sqrt{5})
b) Ta có:
(left{ matrix{ 6sqrt 2 = sqrt {{6^2}.2} = sqrt {36.2} = sqrt {72} hfill cr 3sqrt 7 = sqrt {{3^2}.7} = sqrt {9.7} = sqrt {63} hfill cr 2sqrt {14} = sqrt {{2^2}.14} = sqrt {4.14} = sqrt {56} hfill cr} right.)
Vì: (38 < 56 < 63 < 72Leftrightarrow sqrt{38}<sqrt{56}<sqrt{63}<sqrt{72})
(sqrt {25x} - sqrt {16x} = 9) khi (x) bằng
(A) (1); (B) (3); (C) (9); (D) (81).
Hãy chọn câu trả lời đúng.
Bài giải:
Ta có:
(sqrt{25x}-sqrt{16x}=9)
(sqrt{5^2.x}-sqrt{4^2.x}=9)
(Leftrightarrow 5sqrt{x}-4sqrt{x}=9)
(Leftrightarrow (5-4)sqrt{x}=9)
(Leftrightarrow sqrt{x}=9)
(Leftrightarrow (sqrt{x})^2=9^2)
(Leftrightarrow x=81)
Chọn đáp án D. (81)
Bài trước:
Bài tiếp theo:
Xem thêm:
Chúc các bạn làm bài tốt cùng giải bài tập sgk toán lớp 9 với giải bài 53 54 55 56 57 trang 30 sgk toán 9 tập 1!
“Bài tập nào khó đã có giaibaisgk.com“
Link nội dung: https://phamkha.edu.vn/bai-53-trang-30-sgk-toan-9-tap-1-a2448.html